On complex strictly convex spaces, I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

Dynamics of non-expansive maps on strictly convex Banach spaces

This paper concerns the dynamics of non-expansive maps on strictly convex finite dimensional normed spaces. By using results of Edelstein and Lyubich, we show that if X = (R, ‖ · ‖) is strictly convex and X has no 1-complemented Euclidean plane, then every bounded orbit of a non-expansive map f : X → X , converges to a periodic orbit. By putting extra assumptions on the derivatives of the norm,...

متن کامل

Convex Sets and Convex Combinations on Complex Linear Spaces

Let V be a non empty zero structure. An element of Cthe carrier of V is said to be a C-linear combination of V if: (Def. 1) There exists a finite subset T of V such that for every element v of V such that v / ∈ T holds it(v) = 0. Let V be a non empty additive loop structure and let L be an element of Cthe carrier of V . The support of L yielding a subset of V is defined by: (Def. 2) The support...

متن کامل

weighted composition operators between growth spaces on circular and strictly convex domain

let $omega_x$ be a bounded, circular and strictly convex domain of a banach space $x$ and $mathcal{h}(omega_x)$ denote the space of all holomorphic functions defined on $omega_x$. the growth space $mathcal{a}^omega(omega_x)$ is the space of all $finmathcal{h}(omega_x)$ for which $$|f(x)|leqslant c omega(r_{omega_x}(x)),quad xin omega_x,$$ for some constant $c>0$, whenever $r_{omega_x}$ is the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1979

ISSN: 0022-247X

DOI: 10.1016/0022-247x(79)90055-6